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The current study discusses the first and second laws analyses of a multi-commodity solar

energy-based integrated energy system. The system produces hydrogen in a sustainable

manner and supplies 500 MW of electricity, hot water, and hot air for space heating for

various applications in sectors. Energy and exergy losses of the plant components are

calculated based on a thermodynamic model. Based on the total output work, both energy

and exergy efficiencies of the overall system are determined. A parametric study is per-

formed by varying inlet air temperature, air-to-fuel ratio, throttling temperature, and

condenser temperature. The results show that increasing pressure ratio increases the ef-

ficiency from 66% to 68% over a range of 8e25. Increasing the air-to-fuel ratio increases the

energy efficiency from 0.60 to above 0.80, respectively.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

Exergy (known as availability) is the maximum useful work

measure. It is also a metric of energy, not only in quantity but

also in quality. A standalone energy analysis is not sufficient

to investigate irreversibility of a system, however, exergy

counts on occurred irreversibility in a process. Exergy analysis

is used to evaluate efficient use of energy in a power plant.

Exergy is not a thermodynamics quantity; however it is

depended on thermodynamics quantities (i.e., enthalpy and

entropy); which is used widely since 1960 [1,2]. The main goal

of doing exergy analysis for a power plant is to find the irre-

versibility in each component of the plant and trying to
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minimize them. Currently, exergy analyses have been adop-

ted by many researchers for a huge number of industrial

processes.

Ganapathy et al. [1] have performed an exergy analysis for

a 50 MW combined power plant located in India. They found

that major exergy losses take place in the condenser, however

this energy cannot be used elsewhere. They also suggested

modifications be made for the combustor due to high exergy

loss. Horlock et al. [3] performed an exergy analysis for three

different fossil fuel based power plants. They also considered

that irreversibility takes places during combustion. Dincer

and Rosen [3,7e13] have discussed exergy analysis for a vari-

ety of processes and system components. Sue and Chuang [4]

have also discussed exergy analysis for a combustion gas in a
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Nomenclature

E Energy, kJ
_E Energy rate, kW

Ex Exergy, kJ

ex Specific exergy, kJ/kg
_Ex Exergy rate, kW

H Total enthalpy, kJ
_H Enthalpy rate, kW

h Specific enthalpy, kJ/kg
_m Mass flow rate, kg/s

Q Heat, kJ
_Q Heat rate, kW

s Specific entropy, kJ/kg$K
_S Heat rate, kW

T Temperature, K

P Pressure, Pa

Po Reference-environment pressure, Pa
_W Work rate, kW

Subscripts

Ch Chemical

Dest Destruction

En Energy

Ex Exergy

o Reference

Greek letters

D Difference

h Efficiency
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turbine based power generation system. Their results show

that exergy analysis calculates the plant efficiency more

accurately. Abdul Khaliq [5] discussed the exergy analysis of a

gas turbine tri-generation system. His results show that

maximum exergy is destroyed during steam generation and

the exergy destruction, when combustion decreases because

of an increase in the pressure ratio. Haseli et al. [6] have dis-

cussed thermodynamics analysis for a combined gas turbine

power plant with a solid oxide fuel cell. Their results show

that increasing the compressor inlet temperature decreases

both energy and exergy efficiencies for both conventional and

SOFC power plants. However, a gas turbine with SOFC has a

26.6% higher exergetic performance. Rabbani et al. [14] have

discussed energy and exergy analysis of a solar based inte-

grated system. In another study, they have also discussed

wind turbine based combined cycles [15]. They have also

studied hydrogen production systems coupled with different

energy systems [16e19].

AlZahrani and Dincer [20] have performed design and

analysis of a solar tower based integrated system using high

temperature electrolyzer for hydrogen production. His sys-

tem analysis showed 12.7% solar to hydrogen efficiency.

Sarrias-Mena et al. [21] has developed electrolyzer models

for hydrogen production from wind energy systems. They

developed four electrolyzer models for hydrogen production

from wind energy systems and evaluated their performance.

They compared the response of each of the model under

variable wind speed and grid demand. Khalid et al. [22] have
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performed comparative assessment of two integrated

hydrogen energy systems using electrolyzers and fuel cells.

Cilogullarıa et al. [23] have done investigation of hydrogen

production performance of a photovoltaic (PV) and thermal

system. Using exergy analysis he showed that PV/T based

hydrogen production systems have higher energy and

exergy efficiency and they are more cost effective. Yilmaz

et al. [24] have done exergo-economic evaluation of

hydrogen production powered by combined flash-binary

geothermal power plant. His result showed that the unit

exergetic cost of electricity from the power plant is 11.1 $/GJ

(or 0.0400 $/kWh) and the unit exergetic cost of hydrogen is

26.1 $/GJ (or 3.14 $/kg H2). Kalincia et al. [25] have done

performance assessment of hydrogen production from a

solar-assisted biomass gasification system. They reported

energy and exergy efficiency of 27.29% and 23.92%, respec-

tively. Various additional researchers [e.g., [26e34]] have

analyzed and evaluated numerous hydrogen production

based integrated energy systems both energetically and

exergetically.

The aim of the present study is to thermodynamically

analyze a new solar energy-based multigeneration system

which produces heat, electricity, hot water, and hot air for

space heating for various sectors. Energy and exergy analyses

of the proposed system are conducted, and the effects of

several different parameters are studied on overall energy and

exergy efficiencies of the system.
System description

Fig. 1 shows the multi generation system used in the current

study. This system is designed to supply 500 MW of elec-

tricity, hot water, hot air for space heating, and excess

electricity can be used for hydrogen production. Air and fuel

(methane in this study) are combust in combustion chamber

and expanded in a gas turbine to produce mechanical work

output which is converted to electrical work by an electricity

generator. The high temperature and low pressure exhaust

gases then are used to heat the high pressure water in steam

Rankine cycle by using heat recovery heat exchanger (HX-1).

The heat rejected by the condenser (HX-2) in the Rankine

cycle is recovered by heating another stream of water. A part

of this heated water is used in electrolyzer and other part is

used as a hot water supply for residential use after passing

through HX-4. Another stream of water acting as a coolant

passes though HX-4 and is used in heat pump where R-134a

is utilized as a working fluid. Air is heated in the heat pump

system and it is used in space heating. In summary, the

present system has four outputs, namely, electricity, hot

water, space heating and hydrogen for utilization and

deployment in various sectors.
Thermodynamic modeling

Each component in the plant has been analyzed separately;

four equations have been written for each component,

including enthalpy, entropy, and exergy. The basic exergy

equation is
erational hydrogen production system: Performance evaluation,
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Fig. 1 e A new multi-commodities energy system.
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Ex ¼ _mððh� hoÞ � Toðs� soÞÞ (1)

Where ho and so are calculated for both the fuel and air loops

at 25 �C and at 101.325 kPa.

The main assumptions adopted for the simulation are lis-

ted as follows:

� The electrical power requirement for the community is

500 MW.

� Steadystateoperation isassumed for theplant components.

� The heat exchanger, pump (P), compressor (Comp) and

turbines are adiabatic.

� Kinetic and potential exergetic terms are neglected for all

system components.

� The ambient temperature and pressure are constant (i.e.,

T0 ¼ 298 K and P0 ¼ 100 kPa).

� Air is treated as an ideal gas with a molar composition of

21% oxygen and 79% nitrogen.

� The isentropic efficiency of the turbines, compressor and

pump is 80%.
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The mass, energy, entropy and exergy equations for each

of the component are written as follows:

Compressor (1e2)

The mass, energy, entropy and exergy balance equations for

the compressor are given as follows:

_m1 ¼ _m2 (2a)

_m1h1 þ _W1 ¼ _m2h2 (2b)

_m1s1 þ _Sg1 ¼ _m2s2 (2c)

_m1ex1 þ _W1 ¼ _m2ex2 þ _EdestComp;1
(2d)

Combustion chamber (2e3e4)

The mass, energy, entropy and exergy balance equations for

the combustion chamber are given as follows:
erational hydrogen production system: Performance evaluation,
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_m2 þ _m3 ¼ _m4 (3a)

_m2h2 þ _m3h3 ¼ _m4h4 (3b)

_m2s2 þ _m3s3 ¼ _m4s4 (3c)

_m2ex2 þ _m3ex3 ¼ _m4ex4 þ _EdestCC (3d)

Gas turbine (4e5)

The mass, energy, entropy and exergy balance equations for

the gas turbine are given as follows:

_m4 ¼ _m5 (4a)

_m4h4 ¼ _m5h5 þ _WGT (4b)

_m4s4 þ _Sg;GT ¼ _m5s5 (4c)

_m4ex4 ¼ _m5ex5 þ _EdestGT þ _WGT (4d)

HX-1 (5e7e8e10)

The mass, energy, entropy and exergy balance equations for

the HX-1 are given as follows:

_m5 þ _m7 ¼ _m8 þ _m10 (5a)

_m5h5 þ _m7h7 ¼ _m8h8 þ _m10h10 (5b)

_m5s5 þ _m7s7 þ _Sg;HX�1 ¼ _m8s8 þ _m10s10 (5c)

_m5ex5 þ _m7ex7 ¼ _m8ex8 þ _m10ex10 þ _EdestHX�1 (5d)

Pump-1 (6e7)

The mass, energy, entropy and exergy balance equations for

the Pump-1 are given as follows:

_m6 ¼ _m7 (6a)

_m6h6 þ _WP1 ¼ _m7h7 (6b)

_m6s6 þ _Sg;P1 ¼ _m7s7 (6c)

_m6ex6 þ _WP1 ¼ _m7ex7 þ _EdestP1 (6d)

Steam turbine (8e9)

The mass, energy, entropy and exergy balance equations for

the stream turbine are given as follows:

_m8 ¼ _m9 (7a)

_m8h8 ¼ _m9h9 þ _WST (7b)

_m8s8 þ _Sg;ST ¼ _m9s9 (7c)
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_m8ex8 ¼ _m9ex9 þ _EdestST þ _WST (7d)

Condenser (12e9e6e13)

The mass, energy, entropy and exergy balance equations for

the condenser are given as follows:

_m12 þ _m9 ¼ _m6 þ _m13 (8a)

_m12h12 þ _m9h9 ¼ _m6h6 þ _m13h13 (8b)

_m12s12 þ _m9s9 þ _Sg;HX�2 ¼ _m6s6 þ _m13s13 (8c)

_m12ex12 þ _m9ex9 ¼ _m6ex6 þ _m13ex13 þ _EdestHX�2
(8d)

Pump-2 (11e12)

The mass, energy, entropy and exergy balance equations for

the Pump-2 are given as follows:

_m11 ¼ _m12 (9a)

_m11h11 þ _WP2 ¼ _m12h12 (9b)

_m11s11 þ _Sg;P2 ¼ _m12s12 (9c)

_m11ex11 þ _WP2 ¼ _m12ex12 þ _EdestP2 (9d)

Pump-3 (16e17)

The mass, energy, entropy and exergy balance equations for

the Pump-3 are given as follows:

_m16 ¼ _m17 (10a)

_m16h16 þ _WP2 ¼ _m17h17 (10b)

_m16s16 þ _Sg;P3 ¼ _m17s17 (10c)

_m16ex16 þ _WP3 ¼ _m17ex17 þ _EdestP3 (10d)

HX-3 (17e14e15e14)

The mass, energy, entropy and exergy balance equations for

the HX-3 are given as follows:

_m17 þ _m14 ¼ _m15 þ _m18 (11a)

_m17h17 þ _m14h14 ¼ _m15h15 þ _m18h18 (11b)

_m17s17 þ _m14s14 þ _Sg;HX�3 ¼ _m15s15 þ _m18s18 (11c)

_m17ex17 þ _m14ex14 ¼ _m15ex15 þ _m18ex18 þ _EdestHX�3
(11d)

HX-4 (18e23e20e19)

The mass, energy, entropy and exergy balance equations for

the HX-4 are given as follows:
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Fig. 2 e Effects of compressor ratio on energy and exergy

efficiencies.
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_m18 þ _m23 ¼ _m20 þ _m19 (12a)

_m18h18 þ _m23h23 ¼ _m20h20 þ _m19h19 (12b)

_m18s18 þ _m23s23 þ _Sg;HX�4 ¼ _m20s20 þ _m19s19 (12c)

_m18ex18 þ _m23ex23 ¼ _m20ex20 þ _m19ex19 þ _EdestHX�4
(12d)

HX-5 (21e24e22e25)

The mass, energy, entropy and exergy balance equations for

the HX-5 are given as follows:

_m21 þ _m24 ¼ _m22 þ _m25 (13a)

_m21h21 þ _m24h24 ¼ _m22h22 þ _m25h25 (13b)

_m21s21 þ _m24s24 þ _Sg;HX�5 ¼ _m22s22 þ _m25s25 (13c)

_m21ex21 þ _m24ex24 ¼ _m22ex22 þ _m25ex25 þ _EdestHX�5 (13d)

Compressor-2 (20e21)

The mass, energy, entropy and exergy balance equations for

the Compressor-2 are given as follows:

_m20 ¼ _m21 (14a)

_m20h20 þ _WComp2 ¼ _m21h21 (14b)

_m20s20 þ _Sg;Comp2 ¼ _m21s21 (14c)

_m20ex20 þ _WComp2 ¼ _m21ex21 þ _EdestComp2
(14d)

The network output (in kW)of turbinework is calculated as

_Wnet ¼
X

_Wturbine �
X

_Wpump �
X

_Wcompressors (15)

As there are four outputs for this system, the net energy

efficiency can be defined as

hth ¼
_Wnet þ _mH2

HHVH2
þ _QHot�Water þ _QHeat

_mfHHVf
(16)

where

_QHot�Water ¼ _m14ðh14 � h15Þ (17)

_QHeat ¼ _m24ðh25 � h24Þ (18)

Exergy efficiency is the ratio of net work over chemical

content of the fuel.

hex ¼
_Wnet þ _mH2

exch
H2

þ _ExHot�Water þ _ExHeat

_m1exfch
(19)

Where

_ExHot�Water ¼ _m14ðex14 � ex15Þ (20)
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_ExHeat ¼ _m24ðex25 � ex24Þ (21)

Results and discussion

Fig. 2 shows the effect of compressor ratio on energy and

exergy efficiency of the plant. Increasing the compressor ratio

increases the plant efficiency due to increase in output work

by the gas turbine. The excess electricity is used to produce

hydrogen. However, increasing the pressure ratio also in-

creases the work input required by the compressor which

somewhat the excess power generation by the gas turbine.

Changing the compressor ratio changes the energy efficiency

from 66% to above 68%. The change in exergy efficiency with

respect to change in compressor ratio is small. The change is

just 2% over a compressor ratio of 5e25. This suggests that

exegetically and economically it may not be a very wise de-

cision to use a large compressor.

Fig. 3 shows the effect of air to fuel ratio. The trend is linear.

Increasing the air to fuel ratio increases both energy and

exergy efficiencies. The energy exergy efficiency changes from

60% to 83% which represents a significant increase. The net

output power increases with increase in air to fuel ratio.

However, due to a large exergy destruction in combustion

chamber with increase in air to fuel ratio, the change in exergy

efficiency is comparatively small. The exergy efficiency

changes from 59.5% to around 62%.

Fig. 4 illustrates the effect of Rankine cycle (i.e., steam

turbine inlet temperature) on the energy efficiency and net

work output. Increasing the temperature, although, increases

the output power from steam turbine but due to large exergy

destruction across turbine and less available energy for hot

water and space heating; therefore, the overall energy and

exergy efficiencies decrease. The energy efficiency changes

from 65.1% to around 65.8%, respectively. While the exergy

efficiency changes from 59.1% to 59.5%. The change in effi-

ciency is very small which suggests that the plant can be

operated in the temperature range of 600 Ke800 K. However,

operating at higher temperature may result a higher negative

economic impact without any significant increase in the

overall efficiency of the plant.
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Fig. 3 e Effects of air to fuel ratio on energy and exergy

efficiencies.

Fig. 4 e Effects of steam turbine inlet temperature on

energy efficiency and net work output.

Fig. 6 e Effects of throttling temperature on energy and

exergy efficiencies.
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Decreasing the hot water supply temperature actually de-

creases both energy and exergy efficiency of the system.

Because the condenser ejects more energy than actually uti-

lized amount which results decrease in efficiency of the plant.

Fig. 5 shows the effect of hot water temperature on the energy

and exergy efficiency of the system. The effect on energy ef-

ficiency is quite dominant and energy efficiency decreases

linearly from 78% to 64%. While the change in exergy effi-

ciency is quite negligible (i.e., 0.5%).
Fig. 5 e Effects of hot water supply temperature on energy

and exergy efficiencies.
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Fig. 6 indicates the effect of varying throttling temperature

on exergy efficiency. Increasing the throttling temperature

increases the energy efficiency and vice versa. The change is

very small which accounts for only 0.1%. The energy and

exergy efficiencies decrease initially with a sudden increase

and decrease from 270 K onward. While the exergy efficiency

increases with an increase in temperature.

Fig. 7 presents the effect of ambient temperature on energy

and exergy efficiencies of the system. The energy and exergy
Fig. 7 e Effects of surrounding temperature on energy and

exergy efficiencies.

Fig. 8 e Effects of ambient temperature on plant work

output, space heating and hot water supply.
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Fig. 9 e Exergy destruction across different components.
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efficiencies show completely opposite trends. With increase

in ambient temperature, the energy efficiency increases

sharply from 60% to around 80%. This increase is due to the

cumulative increase of hot water supply and space heating. If

the temperature difference between the ambient and required

space heating and hot water supply is lower, then higher flow

rates of hot water and air can be supplied. This actually results

increase in energy efficiency of the system. It is also important

to notice that increasing the ambient temperature actually

decreases the work output of the plant as that is why many

gas turbine plants have air inlet cooling system installed with

them. Fig. 8 shows the effect of ambient temperature on net

work output and heat utilized for water and space heating.

Fig. 9 illustrates the exergy destruction across different

components of the system. The highest exergy destruction is

across combustion chamber. The exergy destruction across

steam turbine and gas turbine is also quite noticeable. The

results of this study shown in Fig. 9 are consistent well with a

similar system considered by Ameri et al. [35].
Conclusions

In the present study, exergy analysis of a multi generation

system is conducted. Energy and exergy losses of the different

plant components have been estimated based on the ther-

modynamics model. Based on the total work output, energy

and exergy efficiencies have been determined. A parametric

study has been performed by varying inlet air temperature, air

to fuel ratio, throttling temperature, and condenser temper-

ature. The following conclusions are extracted from this

study:

� Increasing pressure ratio increases the efficiency from 66%

to 68% over a range of 8e25. Increasing the air to fuel ratio

increases the energy efficiency from 0.60 to above 0.80.
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� With increase in ambient temperature, the energy effi-

ciency increases sharply from 60% to around 80%.

� The energy and exergy efficiencies decrease initially with a

sudden increase and decreases from 270 K to onward.

While the exergy efficiency increases with increase in

temperature.

� Due to large exergy destruction in combustion chamber

with increase in air to fuel ratio, the change in exergy ef-

ficiency is comparatively small. The exergy efficiency

changes from 59.5% to around 62%.

� Increasing the air to fuel ratio increases both energy and

exergy efficiencies. The energy exergy efficiency changes

from 60% to 83% which indicates a significant increase.
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